04 Aug 2018
Calculating the determinant of a 3 x 3 matrix is relatively trivial; the Laplace expansion is the method used here.
Consider the following 3 x 3 matrix:
`[[a,b,c],[d,e,f],[g,h,i]]`
The formula for calculating the determinant of this matrix follows this form:
`d = (a * (ei - fh)) - (b * (di - fg)) + (c * (dh - eg))`
And that's it.
Example
`[[6,1,1],[4,-2,5],[2,8,7]]`
`d = (6 * ((-2 * 7) - (5 * 8))) - (1 * ((4 * 7) - (5 * 2))) + (1 * ((4 * 8) - (-2 * 2)))`
`=> (6 * ((-14) - (40))) - (1 * ((28) - (10))) + (1 * ((32) - (-4)))`
`=> (6 * (-14 - 40)) - (1 * (28 - 10)) + (1 * (32 - -4))`
`=> (6 * (-54)) - (1 * (18)) + (1 * (36))`
`=> (6 * -54) - (1 * 18) + (1 * 36)`
`=> (-324) - (18) + (36)`
`=> -324 - 18 + 36`
`=> -306`
Note that the above calculations have been arranged so they can be ported directly to code.
decimal a = 6; decimal b = 1; decimal c = 1; decimal d = 4; decimal e = -2; decimal f = 5; decimal g = 2; decimal h = 8; decimal i = 7; decimal ei = e * i; decimal fh = f * h; decimal di = d * i; decimal fg = f * g; decimal dh = d * h; decimal eg = e * g; decimal determinant = (a * (ei - fh)) - (b * (di - fg)) + (c * (dh - eg));
Copyright © 2025 carlbelle.com