On this page:
The state vector which a quantum register represents has the following property:
|α|2 + |β|2 + ... + |n|2 = 1
The sum of the squared absolute value of each amplitude must equal 1. Each amplitude value of a randomly generated register is guaranteed to satisfy this condition, however these coefficients are often difficult to work with. Preparing a register with your own ampltude values is supported by Quantum Console, however these values will need to be normalised as well.
The Quantum Console syntax for this operation is:
NORMALISE();
* Note that the command has no parameters.
To calculate whether a state vector appears in a normalise form, the sum of the squared absolute value of each ampltude must equal 1.
To perform this calculation:
If the result is equal to 1, then the state vector appears in normalised form.
The following table illustrates the normalisation recalculation process on a 3 qubit register, using amplitudes that are multiples of 10:
Values | New values | Normalised values | ||||
i | ni | |ni| | (ni)2 | (ni) / R | |ni / R|2 | |
0 | 000|› | 10 | 10 | 100 | 0.070014004 | 0.004901961 |
1 | 001|› | 20 | 20 | 400 | 0.140028008 | 0.019607843 |
2 | 010|› | 30 | 30 | 900 | 0.210042013 | 0.044117647 |
3 | 011|› | 40 | 40 | 1600 | 0.280056017 | 0.078431373 |
4 | 100|› | 50 | 50 | 2500 | 0.350070021 | 0.12254902 |
5 | 101|› | 60 | 60 | 3600 | 0.420084025 | 0.176470588 |
6 | 110|› | 70 | 70 | 4900 | 0.490098029 | 0.240196078 |
7 | 111|› | 80 | 80 | 6400 | 0.560112033 | 0.31372549 |
Let S = ∑(ABS(ni)2) // Sum of = 20400 Let R = √(S) // Square root = √(20400) = 142.8285686 Let N = ∑(ABS((ni) / R)2) // Sum of = 1
Where i denotes the index of the amplitude, ni denotes the value of the amplitude, S denotes the sum of |ni|2, R denotes the square root √ of S, and finally, N denotes the normalised state vector value, comprising of the sum of ∑ |ni / R|2.
To normalise any state vector:
The following table illustrates the normalisation recalculation process on a 3 qubit register, using amplitudes between 0.0 and 1.0:
Values | ||||
i | ni | |ni| | (ni)2 | |
0 | 000|› | 0.331857021398009 | 0.331857021398009 | 0.110129083 |
1 | 001|› | 0.0513909701393993 | 0.0513909701393993 | 0.002641032 |
2 | 010|› | 0.213205457085919 | 0.213205457085919 | 0.045456567 |
3 | 011|› | 0.0330167348350858 | 0.0330167348350858 | 0.001090105 |
4 | 100|› | 0.762318448845313 | 0.762318448845313 | 0.581129417 |
5 | 101|› | 0.118051697313154 | 0.118051697313154 | 0.013936203 |
6 | 110|› | 0.489760477709359 | 0.489760477709359 | 0.239865326 |
7 | 111|› | 0.0758437051576894 | 0.0758437051576894 | 0.005752268 |
Let S
= ∑(ABS(ni)2) // Sum of
= 1
As S is already equal to 1, this state vector is already in normalised form, no further calculations are required.
The following table illustrates the normalisation recalculation process on a 3 qubit register, using postive and negative prime amplitudes between -20 and 20:
Values | New values | Normalised values | ||||
i | ni | |ni| | (ni)2 | (ni) / R | |ni / R|2 | |
0 | 000|› | 2 | 2 | 4 | 0.062408649 | 0.00389484 |
1 | 001|› | -3 | 3 | 9 | -0.093612974 | 0.008763389 |
2 | 010|› | 5 | 5 | 25 | 0.156021623 | 0.024342747 |
3 | 011|› | -7 | 7 | 49 | -0.218430273 | 0.047711784 |
4 | 100|› | 11 | 11 | 121 | 0.343247571 | 0.117818895 |
5 | 101|› | -13 | 13 | 169 | -0.405656221 | 0.164556969 |
6 | 110|› | 17 | 17 | 289 | 0.530473519 | 0.281402155 |
7 | 111|› | -19 | 19 | 6400 | -0.592882169 | 0.351509266 |
Let S = ∑(ABS(ni)2) // Sum of = 1027 Let R = √(S) // Square root = √(1027) = 32.04684072 Let N = ∑(ABS((ni) / R)2) // Sum of = 1
The state vector is now in normalised form.
Copyright © 2025 carlbelle.com